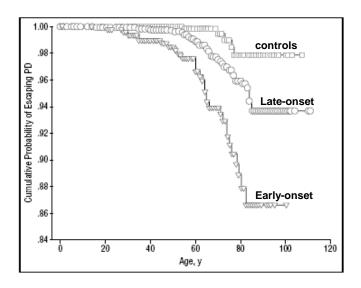


Genética en la enfermedad de Parkinson

Ignacio F. Mata
Assistant Staff, GMI/LRI, Cleveland Clinic Foundation
Assistant Professor of Molecular Medicine,
Cleveland Clinic Lerner College of Medicine, Case
Western Reserve University


Enfermedad de Parkinson : Etiología

Familial Aggregation of Parkinson Disease

A Comparative Study of Early-Onset and Late-Onset Disease

Haydeh Payami, PhD; Sepideh Zareparsi, PhD; Dora James, BS; John Nutt, MD

Arch Neurol 2002

HR P				
Parents and Siblings	(95% Confidence Interval)	Value		
All PD vs controls	3.92 (1.59-9.68)	.003		
Late-onset PD vs controls	2.95 (1.17-7.42)	.02		
Early-onset PD vs controls	7.76 (3.00-20.00)	<.001		
Early-onset PD vs late-onset PD	2.68 (1.69-4.24)	<.001		

^{*}HR indicates hazard ratio; PD, Parkinson disease.

Factores de Riesgo

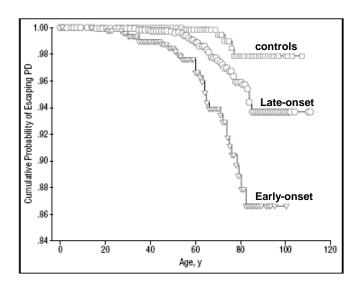
- Edad
- Sexo
- Pesticidas (paracuato, rotenona,...)
- Exposición a metales
- Vivir en areas rurales
- Beber agua de pozos
- MPTP y Rotenona degeneración selectiva
- Traumatismos cerebrales
- Inflamación
- microbiota
- Virus
- Origen?

¿¿Protectores??

- Tabaco
- Cafeína

Genética

- Estudios de gemelos
- Estudios epidemiológicos


Enfermedad de Parkinson : Etiología

Familial Aggregation of Parkinson Disease

A Comparative Study of Early-Onset and Late-Onset Disease

Haydeh Payami, PhD; Sepideh Zareparsi, PhD; Dora James, BS; John Nutt, MD

Arch Neurol 2002

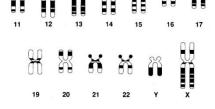
Parents and Siblings	HR (95% Confidence Interval)	<i>P</i> Value			
All PD vs controls	3.92 (1.59-9.68)	.000			
Late-onset PD vs controls	2.95 (1.17-7.42)	.02			
Early-onset PD vs controls	7.76 (3.00-20.00)	<.00			
Early-onset PD vs late-onset PD	2.68 (1.69-4.24)	<.00			

^{*}HR indicates hazard ratio; PD, Parkinson disease.

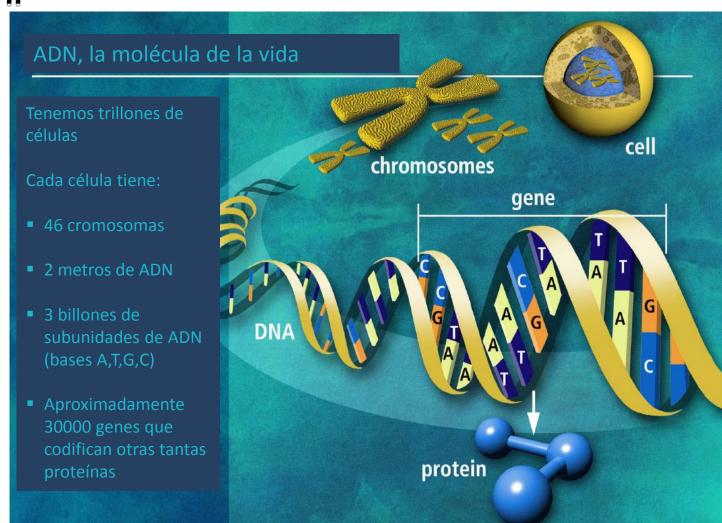
Factores de Riesgo

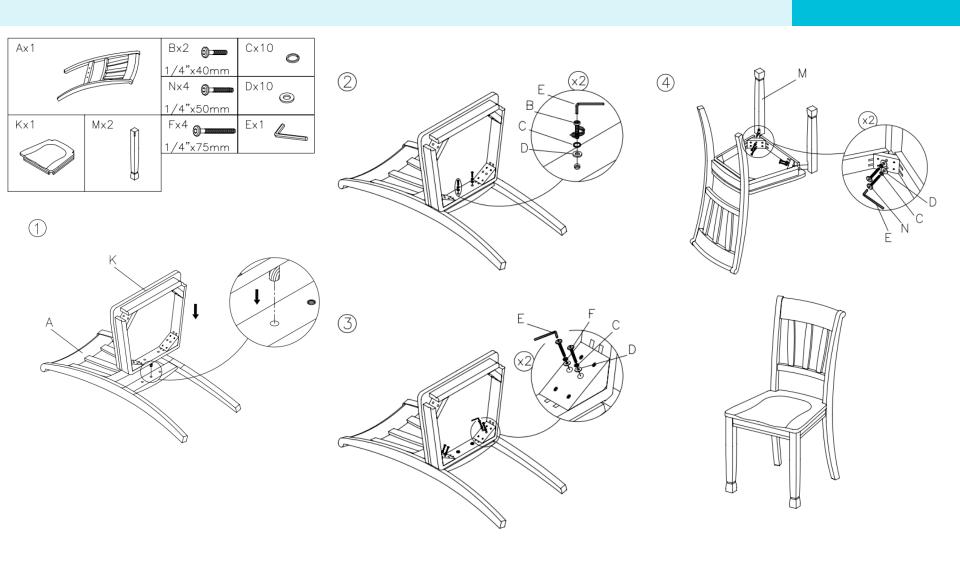
- Edad
- Sexo
- Pesticidas (paracuato, rotenona,...
- Exposición a metales
- Vivir en areas rurales
- Beber agua de pozos
- MPTP y Rotenona degeneración selectiva
- Traumatismos cerebrales
- Inflamación
- microbiota
- Virus
- Origen?
- ¿¿Protectores??
- Tabace
- Cafeina

Genética


- Estudios de gemelos
- Estudios epidemiológicos

Heterogeneidad en la Enfermedad de Parkinson


- Edad de inicio (juvenil, temprano, tardío)
- Síntoma motor (rígido-acinetico, temblor dominante, inestabilidad postural y problemas con la marcha,...)
- Síntoma motor de inicio
- Síntomas no motores (alucinaciones, demencia, depresión,...)
- Progresión (rápida, lenta)
- Patología (cuerpos de Lewy, agregados de tau, agregados de ubiquitina)
- Antecedentes familiares
- Genética (Dominante, recesivo, ligado al X) y población


K I

10

Los genes son el libro de instrucciones

Y cuando hay fallos...

□ Esporádicos 80% ■ Familiares 20% ■ Mendeliana<0.1%

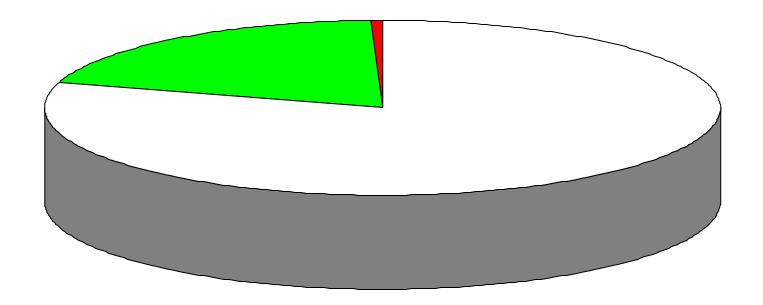


Table 1
Gene locus and disease-causing genes of Parkinson disease.

Locus (OMIM)	Location	Full Gene Name Approved by HGNC	HGNC Approved Gene Symbol (OMIM)	Inheritance	Disease onset	Lewy bodies
PARK1 (168601)	4q22.1	synuclein alpha	SNCA (163890)	AD	Early-onset, late- onset*	С
PARK2 (600116)	6q26	parkin RBR E3 ubiquitin protein ligase	PRKN (602544)	AR	Early-onset	NC
PARK3 (602404)	2p13	Parkinson disease 3	PARK3 (Unclear)	AD	Late-onset	NC
PARK4 (605543)	4q22.1	synuclein alpha	SNCA (163890)	AD	Early-onset	С
PARK5 (613643)	4p13	ubiquitin C-terminal hydrolase L1	UCHL1 (191342)	AD	Early-onset, late- onset	NC
PARK6 (605909)	1p36	PTEN induced putative kinase 1	PINK1 (608309)	AR	Early-onset	NC
PARK7 (606324)	1p36.23	parkinsonism associated deglycase	PARK7 (602533)	AR	Early-onset	NC
PARK8 (607060)	12q12	leucine rich repeat kinase 2	LRRK2 (609007)	AD	Late-onset	C
PARK9 (606693)	1p36.13	ATPase 13A2	ATP13A2 (610513)	AR	Early-onset	NC
PARK10 (606852)	1p32	Parkinson disease 10	PARK10 (Unclear)	Unclear	Late-onset	NC
PARK11 (607688)	2q37.1	GRB10 interacting GYF protein 2	GIGYF2 (612003)	AD	Late-onset	NC
PARK12 (300557)	Xq21-q25	Parkinson disease 12	PARK12 (Unclear)	X-linked inheritance	Late-onset	NC
PARK13 (610297)	2p13.1	HtrA serine peptidase 2	HTRA2 (606441)	AD	Late-onset, early- onset*	NC
PARK14 (612593)	22q13.1	phospholipase A2 group VI	PLA2G6 (603604)	AR	Early-onset	NC
PARK15 (260300)	22q12.3	F-box protein 7	FBXO7 (605648)	AR	Early-onset	NC
PARK16 (613164)	1q32	Parkinson disease 16	PARK16 (Unclear)	Unclear	Late-onset	NC
PARK17 (614203)	16q11.2	VPS35, retromer complex component	VPS35 (601501)	AD	Late-onset	NC
PARK18 (614251)	3q27.1	eukaryotic translation initiation factor 4 gamma 1	EIF4G1 (600495)	AD	Late-onset	NC
PARK19 (615528)	1p31.3	DnaJ heat shock protein family (Hsp40) member C6	DNAJC6 (608375)	AR	Early-onset	NC
PARK20 (615530)	21q22.1	synaptojanin 1	SYNJ1 (604297)	AR	Early-onset	NC
PARK21 (616361)	20p13	transmembrane protein 230	TMEM230 (617019)	AD	Late-onset, early- onset*	С
PARK22 (616710)	7p11.2	coiled-coil-helix-coiled-coil-helix domain containing 2	CHCHD2 (616244)	AD	Late-onset, early- onset*	NC
PARK23 (616840)	15q22.2	vacuolar protein sorting 13 homolog C	VPS13C (608879)	AR	Early-onset	NC
	11p15.4	RIC3 acetylcholine receptor chaperone	RIC3 (610509)	AD	Late-onset, early- onset*	NC

HGNC: HUGO Gene Nomenclature Committee, AD: autosomal dominant, AR: autosomal recessive,*: few cases, C: confirmed; NC: not confirmed.

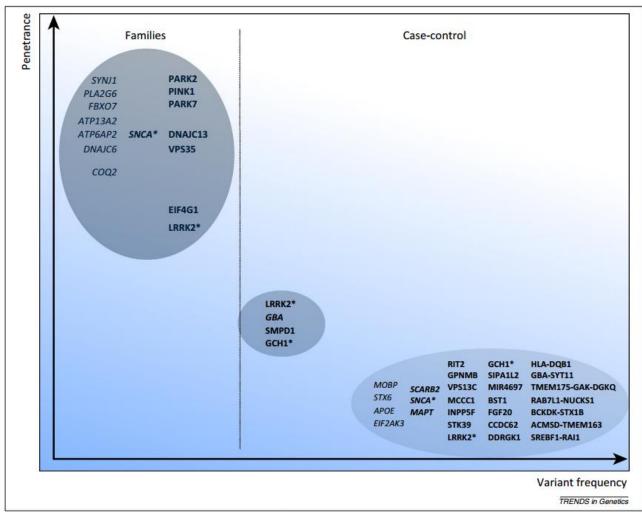
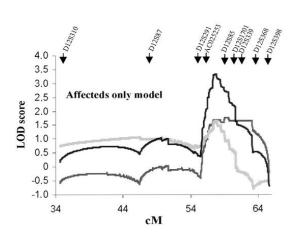
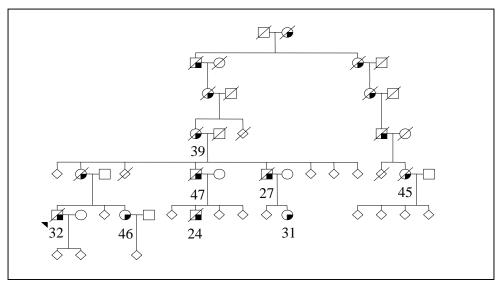


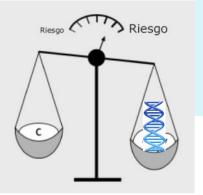
Figure 1. Schematic overview of the penetrance and variant frequencies of the Parkinson disease (PD) and Parkinson-plus genes. An asterisk denotes pleomorphic loci. PD

Modificada de Verstraeten y cols. 2015 Trends Genetics


genes are represented in bold; Parkinson-plus genes are shown in italics. Adapted from [133].



Estudios Familiares

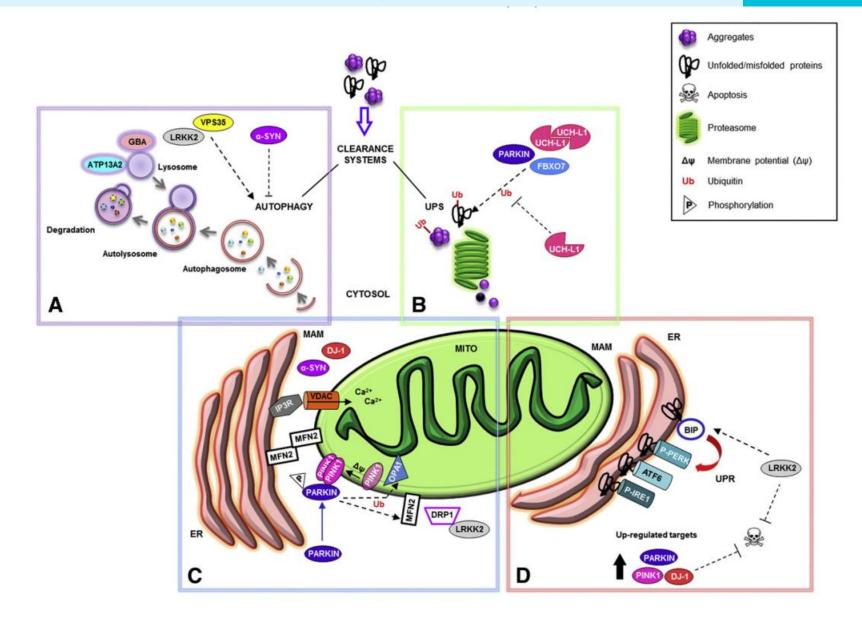

- > Muy importante recoger la máxima información de la historia familiar (Familias endogámicas para patrones recesivos)
- > Muy importante no solo obtener muestras de afectados, sino de familiares sanos también
- > Estudios de ligamiento

Problemas:

- -Penetrancia incompleta, familias también comparten el ambiente,..... (no muy útiles si no hay herencia Mendeliana, más frecuentes, donde varios genes con efectos pequeños son los causantes, efecto aditivo)
- -Dificultad en conseguir suficientes miembros de la familia
- -En enfermedades que comienzo tardío, difícil encontrar familiares todavía vivos

Estudios de Asociación

>Muy usados en	epidemiología	para	detectar facto	ores
ambientales				


- ➤ Comparan la frecuencia de cierta variante entre <u>casos y</u> <u>controles</u>
- ➤ Diferencias significativas en estas frecuencias permiten identificar factores de riesgo (OR>1, p<0.05)
- > Gracias a los avances tecnológicos y la reducción de los costes actualmente es posible estudiar variantes genéticas en el genoma humano completo
- > Permiten el estudio de interacciones entre varios genes o entre genes y factores ambientales
- > Importante replicar los resultados

Problemas:

- -Falsos positivos (debido a: bajo poder estadístico, casos y controles no ajustados, mal uso de la estadística,)
- -Diferencias poblacionales: estratificación (G2385R en LRRK2)

								OR	- 1
Country	Population	Familial AD/ Sporadic	Cases/ Controls	Age (yrs) Cases	Allele frequencies in Cases/Controls (%)		Allele frequencies in Cases/Controls (%)		Reference
					ε2	ε3	ε4		
Argentina	Clinical	Sporadic	45 /45	74.7±5.5				3.3 (1.2-9)	[3]
Brazil	Clinical		55/56	68.3 (65.9-71)	6.4 6.3	72.7 84.8	20.9 8.9		[29]
Brazil	Clinical		57/74	70(55-92)			29.8 11.5		[30]
Brazil	Clinical and population	Sporadic	23/100	72.3±3.3 72.4 (61-84)	7.0 7.5	54.0 81.0	39.0 11.5		[31]
Chile	Population	Sporadic?	95/187	80.7 (79.2-82.2)	8.4 7.2	51.6 73.5	40.0 19.3	ε3ε4:2.5(Cl:-) ε4ε4:12.8 (3.9-47.6)	[4]
"Hispanics" USA	Population		61/90	76±9.4	6 3	70 84	12 24	ε3ε4 2.6 (1.6-6.4)	[9]
"Hispanics" USA	Clinical	Familial and sporadic	46	72±8	3	69	28		[22]
Hispanics (Cuban)	Clinical		180/64	762± 8			0.26 0.12	ε3ε4: 3.9 (2.0-8.3)	[12]
"Hispanics"	Mixed: meta- analysis	Sporadic	261/267		6.3 6.7	74.5 82.3	19.2 11	£3£4 2.2(1.3-3.4) £4£4 2.2(0.7-6.7)	[2]
"Hispanics" (Caribbean)	Population longitudinal		145/516	75.3±5.8	8.3 8.8	76.9 77.1	14.8 14.1	1.1 (0.7-1.6)=n.s.	[13]
"Hispanics" (Cuban)	Clinical		188/84	76.0±8.1	0.02	0.72 0.82	0.26 0.14	3.5 (2.3-5.5)	[32]
Colombia	Clinical	Familial AD + Sporadic	83/44	68.1±8.5	1.9 9.1	74.7 82.9	23.4 8.0	5.1 (1.9 –13.6)	Current study

Jacquier M., Arq Neuropsiquiatr 2001

Da Rosa y cols. 2015 Clinica Chi Acta

Utilidad de los estudios genéticos on's tion Clinical Trials Process Phase II Phase III 100s to Animal and/ Phase I Fewer Phase IV 15-30 1000s of (after or Laboratory than 100 FDA Studies patients patients patients Approval approval) About ⊢ About 1 1/2 years ⁻¹ About 4 1/2 years 8 1/2 years

La Medicina de Precisión o Medicina Personalizada

	Traditional	l Approach	Precision Medicine Approach			
Population of Individuals	**************************************		***************************************			
Classify by Risk			***	淋状		
Surveillance for Preclinical Disease			*	*	*	
Signs or Symptoms	* 7	*				
Treat with				9		
	"One Size Fits Overall Mix	All" Leads to ced Results	Focus Existing	Repurpose FDA Approval	Invent New	
Strategy	*		*	† •	†	
Outcome						
	Benefit No E	ffect Adverse	Benefit	Benefit	Benefit	

Cholerton y cols. 2016

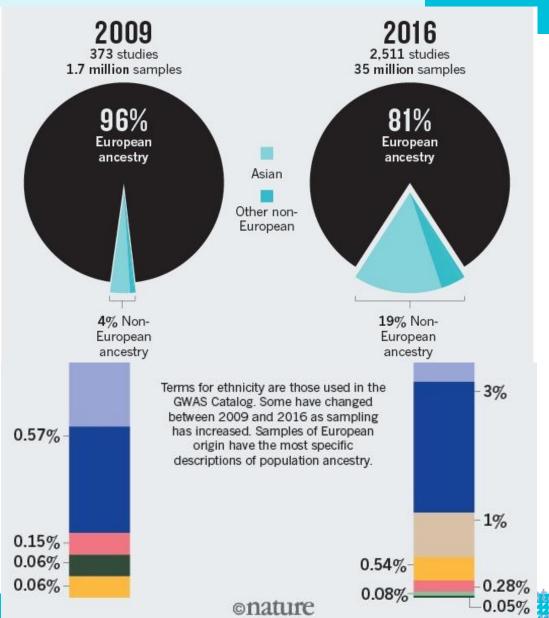

Denali Therapeutics Announces Positive Clinical Results From LRRK2 Inhibitor Program For Parkinson's Disease

August 1, 2018

ム Download PDF

- Healthy volunteer study of DNL201 meets all objectives in phase 1 clinical study, including CSF exposure levels and LRRK2 inhibition, as well as pathway engagement, at doses that were safe and well tolerated
- DNL201 will advance to Phase 1b in Parkinson's disease patients with and without a genetic LRRK2 mutation

NATURE | COMMENT


Genomics is failing on diversity

Alice B. Popejoy & Stephanie M. Fullerton

12 October 2016

An analysis by Alice B. Popejoy and Stephanie M. Fullerton indicates that som populations are still being left behind on the road to precision medicine.

Excelencia en Salud al servicio de la comunidad

Ministerio de Salud

Objetivos de LARGE-PD

- Caracterizar la distribución de mutaciones asociadas a la EP en estos países. (Muy importante para ayudar a reducir el numero de variantes que hace falta estudiar dependiendo de la población)
- > Estudiar la interacción entre la genética y el ambiente
- Estudiar los factores que modifican la penetrancia en cada una de las poblaciones para poder realizar un mejor diagnóstico genético
- ➤ Identificar familias con varios afectados que nos permitan la identificación de nuevos genes involucrados con la enfermedad
- Estimular la colaboración entre distintos países en latino América, así como con otras regiones relacionadas genéticamente como son Norte América o España
- > Ayudar a la formación de investigadores así como a la creación de programas de investigación en cada uno de estos países

Financiación

Marzo 2010- Abril 2012 \$150,000

_	Pais	Ciudad	Casos/Controles
	Peru	Lima	544/260
	Peru	Puno	0/99
	Uruguay	Montevideo	288/329
	Argentina	Buenos Aires	190/7
	Brasil	Sao Paulo + Ribeirao Preto + Porto Alegre	433/353
	Ecuador	Guayaquil	90/0
_	Colombia	Medellin	197/1232
	Total		1742/2280

Como pueden los pacientes y familiars ayudar

El Problema

Escasez de participantes en estudios de investigacion

Menos del 1% del millón de personas con Parkinson en US participan en investigación. (y muy pocos de esos son Hispanos/Latinos)

- La media para que la FDA apruebe una nueva droga son 15 años
- Tanto neurólogos como pacientes muy frecuentemente no están al tanto de los proyectos de investigación que se están desarrollando, incluso localmente

Driving the community...

Parkinson's Foundation Announces New Genetic Initiative Connecting Parkinson's Genetic Data with Clinical Care

MIAMI & NEW YORK—March 6, 2018—The <u>Parkinson's Foundation</u> today announced a new initiative offering genetic testing and counseling to Parkinson's patients within its Center of Excellence network. The foundation is establishing a scientific and industry advisory board that will convene experts in genetics, clinical care, research, and ethics to implement this new initiative.

Roy Alcalay, MD Columbia University SAB Member

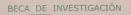
- Aim 1: Accelerate Precision Medicine Clinical Trials for PD
- Aim 2: Unlock the Potential of Precision Medicine for Improved PD Care and Research
- Aim 3: Empower Patients (to take control of their disease)

Begin enrollment in Spring 2019

For more information about the Parkinson's Initiative please contact Anna Naito at anaito@parkinson.org.

Acto de presentación de la Beca Parkinson Asturias

Rueda de Prensa día 17 - 12 - 2002, en la sede de la Asociación en Oviedo


de izquierda a derecha

Juan Manuel Valbuena Camino Presidente de la Asociación

> Mª Luisa Menéndez Viejo Primera Presidenta de la Asociación e impulsora de la BECA

> > Mª Victoria Álvarez Departamento Genética HUCA

Ignacio Fernández Mata Biólogo y primer Becario

racias a la iniciativa de la primera Presidenta y de la primera Secretaria de Parkinson Asturias y a un donativo anónimo se crea en el año 2002, la

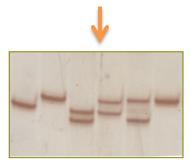
> que en colaboración con el Departamento de Genética del Hospital Universitario Central de Asturias Investiga la enfermedad de Parkinson os genéticos en la Enfermedad de Parkin

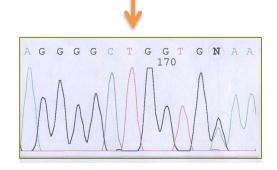
¿Preguntas?

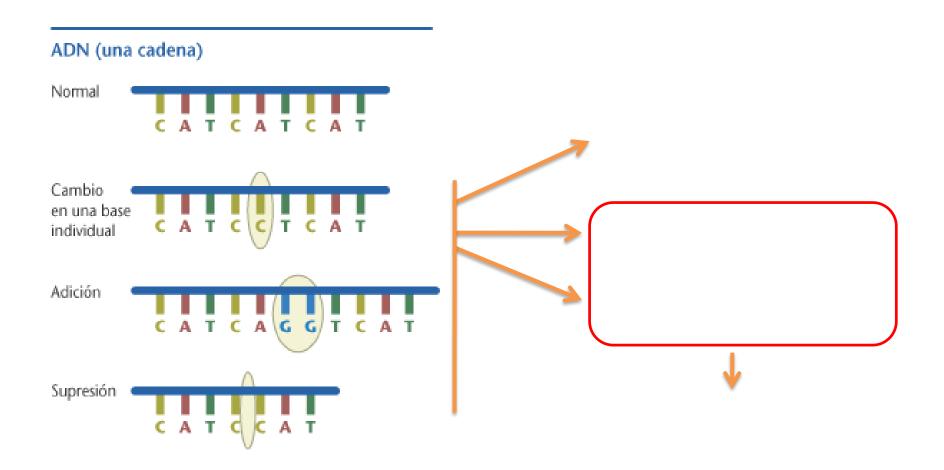
¿Cómo lo hacemos?

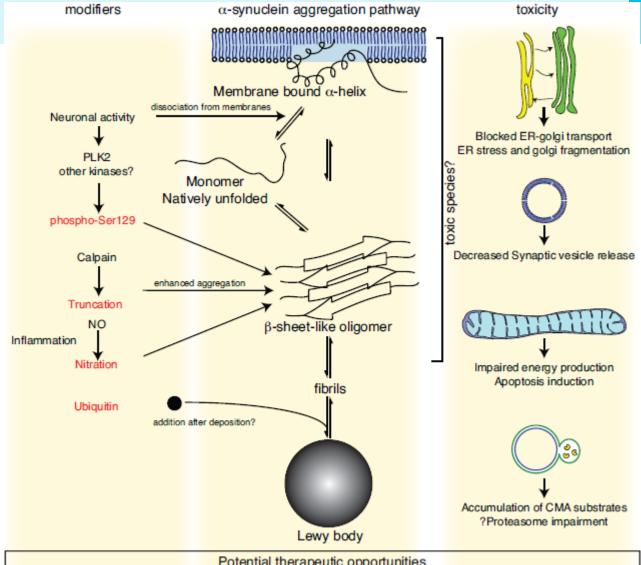
Neurólogos Donación Estracción

Pacientes


PCR CATCATCAT
CATCATCAT
CATCATCAT
CATCATCAT
CATCATCAT
CATCATCAT
CATCATCAT
CATCATCAT


¿Cómo lo hacemos?





Agregacion de Alpha-synucleina

Cookson y cols. 2009 Mol Neurodeg.

Better Lives

Kinase inhibitors Protease inhibitors Anti-inflammatory? Potential therapeutic opportunities

Knockdown total α-synuclein Limit formation or remove oligomers or other aggregates Improve organelle function Limit cell death

Utilidad de los test genéticos en EP

- Diagnóstico (muy raro)
- Detectar una posible mutación que segregue en la familia (<5-10%)</p>
- Prognosis (predecir la evolución del paciente y otras características de la enfermedad de cada paciente)
- Elegibilidad para estudios de investigación
- Medicina de Precisión